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LETTER TO THE EDITOR 

The Schrodinger equation for the f(x)/g(x) interaction 

D Hislop, M F Wolfaardt and P G L Leach? 
CAMS-CNLS, University of the Witwatersrand, Po WITS-2050, South Africa 

Received 4 June 1990 

Abstract. A natural extension of the wzx2+ Ax2/(1 +gx2) interaction is w2x2+f(x)/g(x) 
where f and g are polynomials in x2. The method of obtaining quasi-exact solutions of 
the Schrodinger equation is outlined and some simple examples given. Solutions which 
are valid for part of the real line are obtained when g(x) has real zeros. 

The study of the quasi-exactly solvable Schrodinger equation with model potentials is 
by now well established. Earlier papers (Flessas 1979, 1981a, by Flessas and Das 1980, 
Khare 1981, Magyari 1981) tended to be a little on the ad hoc side. A more systematic 
approach was initiated by Leach (1984, 1985). The next logical development was the 
use of symbolic manipulation codes such as REDUCE to do the algebra (Blecher and 
Leach 1987a, b). (Note that this need not imply that the final results are necessarily 
correct; see the comment by Gallas (1988).) Two problems have usually been studied 
because of their common occurrence in areas of physical interest-the polynomial 
anharmonic oscillator and the x2 + Ax2/( 1 + gx2) interaction in both one and three 
dimensions. Recently the screened Coulomb potential has been added to the list 
(Maccelari and Leach 1989). An exhaustive study of polynomial anharmonic oscillator 
potentials in one dimension for which the Schrodinger equation is quasi-exactly solvable 
was made by Leach et a1 (1989). Some aspects of this work were further developed 
by Pursey (1990). Some aspects of non-separable polynomials potentials in two 
dimensions were reported by Taylor and Leach (1989). The general approach to these 
problems is to make an ansatz of the structure of the wavefunction in the form of 
polynomial multiplied by a suitable exponential to ensure it vanishes at infinity. (All 
of the problems referred to above have been on R‘, R 2  or (0, a).) This procedure is 
by now well established and further expositions would probably be pleonastic. In this 
letter we wish to follow a different tack and explore the natural generalizations of the 
x2+ Ax2/(l +gx2) interaction. Thus we look at potentials of the formf(x)/g(x) where 
f(x)  and g(x) are polynomials of even cuder. We do not attempt an exhaustive, but 
rather indicate the variety of possibilities for which quasi-exact solutions occur. 

We take as our model Hamiltonian 

H = g p 2 +  w2x2+f(x)/g(x)) (1) 
where f ( x )  and g(x)  are polynomials in x2 of degree N. (In practice the degree 
of f (x)  may be less than N.) The corresponding time-independent Schrodinger 
equation is 

d”+(A - ~ ~ ~ ~ - f ( x ) / g ( x ) ) c $ = O .  (2) 
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Following the observation made by Blecher and Leach (1987b) we make the substitution 

= g ( x ) y ( x )  (3) 

gyf‘+2g’y’+ ( ( A  - w 2 X 2 ) g - f +  g ” ) y = O .  (4) 

to balance the equation at the poles of g ( x ) .  Then y ( x )  satisfies 

In the case that g ( x )  has no real zeros, (4) can be applied to (-00, CO) with y (  *CO) = 0 
as boundary conditions. The asymptotic behaviour of y which satisfies these boundary 
conditions is 

y - exp(-5wx2) ( 5 )  

y ( x )  = u ( x )  exp(-&x2) ( 6 )  

gU”+ 2( g’ - wxg)  U’+ { ( A  - w ) g  -f - 2wxg’+ g”}U = 0. (7) 

and, if we make the substitution 

~ ( x )  is a solution of 

Given that 
N N 

f ( x )  = 1 Q i X l i  g ( x )  = 1 bix2’ 
0 0 

we can ensure that wavefunction is square integrable by making the ansatz that 
M 

U ( X )  = 1 kiXZi+E 
0 

(9) 

where E = 0 for an even solution and E = 1 for an odd solution. When (2.8) and (2.9) 
are substituted into (2.7) and coefficients of like powers of x are collected and equated 
to zero, we obtain a system of constraints on the coefficients a i ,  bi and ki and the 
eigenvalue A. There M + N + 1 constraints for the M + 2 N + 2 parameters. (The number 
of parameters is not M + 2 N  + 4  since in the ratio f / g  a degree of freedom is lost and 
another is lost in the normalization of the wavefunction. The easiest way to reduce 
the ambiguity is to set b,  = 1.) We illustrate the solution process with a simple example 
below. 

In previous studies g ( x )  has been the quadratic 1 + g x 2  which does not have real 
zeros. However, there is no reason for g ( x )  not to have real zeros. If g ( x )  becomes 
zero for real x (and this would be pairwise since g ( x )  is a polynomial in x 2 ) ,  (2 .4)  is 
not necessarily an eigenvalue problem over (-00, a)). If the zeros are simple, infinite 
barriers are created in the potential and the eigenvalue problem is confined to sections 
of the real line between singularities or between a singularity and +a) or -CO. If w ’ =  0, 
the latter possibility cannot occur. The process of finding a wavefunction is the same 
as outlined above for g ( x )  not having real zeros with one exception. For a solution 
between two singularities, it is not necessary to include the exponential term. Simple 
example are considered below. 

We take f ( x )  and g ( x )  to be quartic, namely 

f ( x )  = a,+a,x2+a,x4 

g ( x )  = b o + b l x 2 + x 4  460 - b: > 0 
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where, as noted above, b2 is set at unity to avoid any ambiguity. To keep the algebra 
to a minimum we take 

u ( x )  = k o + x 2  (12) 

where k ,  is set at unity to allow for an overall normalization factor. After (10)-(12) 
are substituted into (7) and coefficients of independent powers of x are put equal to 
zero, we find that 

A = a,+ 13w (13) 

(14) 
1 

4w 
k, = - [ a ,  - 30 - ( a 2 + 4 w ) b , ]  

[ ( a 2 + 8 w ) b , +  12- a1]b+8b, - a,+ ( a 2 + 8 0 ) b 0 =  0 (15) 

2bo + [(a, + 12w) bo - a, - 2b,] b = 0. (16) 

Equations (15) and (16) are linear in a, and bo and can be solved to give a, and bo 
in terms of a , ,  a2, b, and W .  Assuming that w is fixed there is a three-parameter family 
of potentials. The parameters are constrained by the requirements that 4bo - b: > 0. 
The wavefunction will be either the ground state (b > 0) or the second excited state 
(k ,<  0). It is interesting to note that the eigenvalue is independent of the values of a, 
and b, which, however, do affect the shape of the wavefunction. 

This situation is simply represented by the choices off ;  g and U to be 

f = Q o  (17) 

g=b2-X2  (18) 

u = k + x 2  (19) 

which, when substituted into (7) yield 

A = w  (20) 

k = b2 + (12 + a o ) / ( 4 w )  (21) 

a, = (7 + 2wb2) * J[(5 + 2 ~ b ~ ) ~ +  8wb2] .  (22) 

With the + sign in (22), k > O  and with the - sign, k<O.  The wavefunction +(x) 
applies separately to the three intervals, (-00, -b ) ,  (-b, b )  and (b, 00). In the two 
semi-infinite intervals the wavefunction represents the ground state no matter the sign 
of k However, in ( -b ,  b), the wavefunction represents the ground state for k > 0 and 
the second excited state for k < 0. Where w = 0, the solution would apply to (-b, b) 
only. Again the wavefunction would represent the ground state or second excited state 
depending upon the sign of k We note that the two solutions correspond to different 
potentials. 

In this brief letter we have pointed out that a variety of potentials which are a 
natural generalization of the w 2 x 2  + Ax2/( 1 + gx2) interaction is quasi-exactly solvable. 
In particular we saw that a denominator with real zeros lies within this class. 

This work was supported in part by the Foundation for Research Development of 
South Africa. 
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